DOMINANT ${ }^{T M}$
 Opto Technologies
 Innovating Illumination
 DATA SHEET: sedLLED

seddLED3.0 A3A-FKG-1800-1

Function and Features:

$>$ Small package outline (LxWxH) of $3.2 \times 3.3 \times 1.35 \mathrm{~mm}$.
> Superior corrosion resistant.
> Serial communication with ISELED® compliance.
$>$ Qualified according to JEDEC moisture sensitivity Level 2.
> Bi directional, half-duplex, 2MBit/s, serial communication.
> D65 White point calibration.
> Brightness \& color stability over temperature.
>8 bit brightness resolution for red, green, and blue LED.
> Temperature compensation on red for constant brightness.

$>$ Build-in diagnostic functions.
$>$ Auto addressing of LED via the serial bus in daisy chain.
> Environmental friendly, RoHS compliance.
$>$ Compliance to automotive standard; AEC-Q102 \& AEC-Q100.

Applications:

$>$ Automotive interior ambient light.
$>$ Backlight.

Optical Characteristics ($\mathbf{T j}=25^{\circ} \mathrm{C}$)

Part Number	Color	Intensity (mcd) Appx. 1.1
A3A-FKG-1800-1	Calibrated White	1800.0
Notes: 1. The above luminous intensity represent brightness at 100%, Color Set Point $=(255,255,255)$.		
Color Set Point	Color \quadDominant Wavelength (nm) (typ)	Luminous Intensity (mcd) (typ)
($255,0,0$)	Red 621	488.1
(0, 255, 0)	True Green 527	1223.4
(0, 0, 255)	Blue 463	88.5

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {CC }}$ Voltage	-0.25	7.0	V
$\mathrm{~V}_{\text {SIO1_P, }} \mathrm{V}_{\text {SIO1_N, }} \mathrm{V}_{\text {SIO2_P, }}, \mathrm{V}_{\text {SIO2_N }}($ Serial IO Voltage $)$	-0.48	7.0	V
$\mathrm{~V}_{\text {PRG }}$ Voltage	-0.20	7.0	V
ESD threshold (HBM)	-	2.5	kV
Junction Temperature	-	125	${ }^{\circ} \mathrm{C}$
Storage temperature	-40	125	${ }^{\circ} \mathrm{C}$
Rth JS elec (typ 93)	-	120	$\mathrm{~K} / \mathrm{W}$
Rth JS real (typ 108)	-	139	$\mathrm{~K} / \mathrm{W}$

* Color Set Point (255, 255, 255)

Recommended Operating Conditions

Parameter	Min.	Typ.	Max.	Unit
VCC Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\text {Sl01_P, }} \mathrm{V}_{\text {SIO1_N, }}$ (Serial IO Voltage)	4.5	5.0	5.5	V
Ambient Temperature	-40	-	110	${ }^{\circ} \mathrm{C}$

Serial Interface Appx. 3.1

Parameter	Description	Min.	Typ.	Max.	Unit
fsIo1_P,s,single ended	Single ended data rate SIO1_P	1.40	2.00	2.60	MHz
fsIO1_N,,single ended	Single ended clock rate SIO1_N	2.80	4.00	5.20	MHz
VII,se	Single ended input high voltage	1.20	-	-	V
VIL,se	Single ended input low voltage	-	-	1.14	V
VIAmp,diff	Differential input amplitude	150	250	325	mV
VoAmp,diff	Differential output amplitude	175	250	325	mV

Current Consumptions Across Operating Temperature Range

	Min.	Typ.	Max.	Unit	
LED Green	I_average	0^{*}	13.2	25.0	mA
LED Blue	I_average	0^{*}	6.1	11.5	mA
LED Red	I_average	0^{*}	13.8	26.7	mA
Driver	I_VCC	0.9	1.2	1.5	mA

* LED current set to zero by command.

Power on Reset (POR)

Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {POR }}$	4.0	4.2	4.4	V

Undervoltage - lockout

Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {uvio }}$	3.2	3.3	3.4	V

seddLED3.0 A3A-FKG Color Grouping $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}{ }^{\text {Appx. } 2.1}$

* Color maintenance between $2.5 \%-100 \%$ of the calibrated brightness.

Bin	Ellipse	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	$\boldsymbol{0}^{\circ}$
D65	3 Step	0.31271	0.32902	0.00669	0.00285	58.57

Pin Configuration

Top View

Pin	Pin	Direction	Description
1	PRG	IN	Has to be connected to GND for proper operation
2	SiO1_N	IO	Serial Communication Interface Master Side, Negative Polarity
3	SiO1_P	IO	Serial Communication Interface Master Side, Positive Polarity
4	GND	Supply	Ground
5	GND	Supply	Ground
6	SiO2_P	IO	Serial Communication Interface Slave Side, Positive Polarity
7	SCC_5V	Supply	
8			

Relative Luminous Intensity
$\mathrm{I}_{\mathrm{v}}=\mathrm{f}$ (color setpoint); $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; DIM 0

Relative Spectral Emission

Maximum Color Setpoint Vs Temperature Color Setpoint $=\mathrm{f}(\mathrm{T})$; Color Setpoint $=(255,255,255)$ White

Radiation Pattern

Relative Luminous Intensity Vs Junction Temperature $\mathrm{I}_{\mathrm{V}} / \mathrm{I}_{\mathrm{V}}\left(25^{\circ} \mathrm{C}\right)=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right)$; Color Setpoint $=(255,255,255)$ White

Relative Luminous Intensity Vs Junction Temperature $\mathrm{I}_{\mathrm{V}} / \mathrm{I}_{\mathrm{V}}\left(25^{\circ} \mathrm{C}\right)=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ;$ Color Setpoint $=(0,255,0)$

True Green

Relative Luminous Intensity Vs Junction Temperature

$$
I_{V} / I_{V}\left(25^{\circ} \mathrm{C}\right)=f\left(\mathrm{~T}_{\mathrm{j}}\right) ; \text { Color Setpoint }=(255,0,0)
$$

Red

Relative Luminous Intensity Vs Junction Temperature

Chromaticity Coordinate Shift Vs Junction Temperature
$\Delta C x, \Delta C y=f\left(T_{j}\right)$; Color Setpoint $=(255,255,255)$
White (Non-Linear Compensation)
*Please refer to application note for non-linear look-up table

Chromaticity Coordinate Shift Vs Junction Temperature
$\Delta \mathrm{Cx}, \Delta \mathrm{Cy}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right)$; Color Setpoint $=(255,0,0)$ Red

Chromaticity Coordinate Shift Vs Junction Temperature $\Delta \mathrm{Cx}, \Delta \mathrm{Cy}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right)$; Color Setpoint $=(0,0,255)$ Blue

Chromaticity Coordinate Shift Vs Junction Temperature $\Delta \mathrm{Cx}, \Delta \mathrm{Cy}=\mathrm{f}\left(\mathrm{T}_{\mathrm{i}}\right) ;$ Color Setpoint $=(255,255,255)$

White (Linear Compensation)

Chromaticity Coordinate Shift Vs Junction Temperature $\Delta C x, \Delta C y=f\left(T_{j}\right)$; Color Setpoint $=(0,255,0)$ True Green

Functional Block Diagram

The device implements a communication for the reception of control commands and for providing device status and configuration data. Low side, configurable constant current sinks are provided for controlling 3 LEDs (RGB). The Main Unit computes the PWM duty cycles from the incoming commands and applies the corresponding control values to the three PWM units. The Main Unit is also in charge of a periodic temperature measurement and an appropriate duty cycle adjustment for the red PWM channel. The actual device temperature is obtained via an integrated analog-digital converter (ADC). Besides the temperature the ADC can also measure various other analog values. These measurements are always triggered by a command from the host. The result of the corresponding A/D conversion is also retrieved by a host command. As each device is individually calibrated to compensate for production variations, the corresponding parameters can be stored in an on-die non-volatile memory. This one-time-programmable memory (OTP) is read at hardware reset and the parameters are copied from the OTP to directly accessible registers.

Typical Application Layout

In order to prevent voltage drops, it is recommended to mount the capacitors C 1 closely to the Vcc pin. The dimensioning of the capacitors depends on the PCB layout and the supply concept.

Bidirectional / Single Ended and Differential

Serial Communication

The attachment to the adjacent devices in the chain is made up by two bidirectional differential serial communication lines. The direction towards the controlling microcontroller device is referred to as the "upstream" connection. The opposite direction towards the end of the chain is the "downstream" link. Both links are controlled by the Communication Unit. Incoming command frames from upstream and responses from downstream are passed to the Main Unit which is responsible for command processing and overall device control. Commands always originate from the controlling microcontroller. The microcontroller is referred to as the "host" in this document.

The gross data rate on the serial line is $2 \mathrm{Mbit} / \mathrm{s}$, i.e. each bit has a nominal duration of 500 ns . As the on-die oscillator has a very limited accuracy, the actual bit time may vary significantly. The whole system is designed for a maximum oscillator variance of $\pm 30 \%$. With the nominal oscillator frequency being 16 MHz , the actual frequency range is $11.2 \ldots 20.8 \mathrm{MHz}$.

The device directly attached to the host does not use the differential line mode on the upstream side. Instead a single-ended line mode is used. The single-ended mode is intended to allow for an easy attachment to industry standard microcontrollers. Both single-ended lines require an external pull-up at the microcontroller to 5 V .

Automatic Detection of the Serial Line Mode

During start-up, the devices automatically detect the mode of the upstream and the downstream link. The upstream link may be either single-ended of differential. If a device detects the upstream to be single-ended, it is the first in the chain of LEDs.

The downstream link may be either differential or unconnected, i.e. the device is the last in the chain of LEDs. After power-up, an idle of tinit tde $=150 \mu \mathrm{~s}$ is recommended before the initialization. If during the initialization, while receiving the enumeration command, the master SIO_N pin is single ended high (5V), the device is switched into single-ended communication mode for this port. The detected mode is stored and used for all following communications until a power cycle or a reset command.

Single ended startup (first device in chain)

Differential startup (devices in chain >1)

Recommended INIT Idle

Parameter	Description	Min.	Typ.	Max.	Unit
tINIT Idle	INIT Idle directly after power up	150	-	-	$\mu \mathrm{s}$

Half-Duplex Communication

The communication operates in a strict master slave manner. I.e. the microcontroller as the master always initiates a communication. Depending on the type of command the LED devices may send a response (read access) or just silently execute the command (write access). There are three basic types of commands which are described in the following.

Basic Frame Format

Commands and the response to commands are transmitted with serial frames. A serial frame always consist of a frame_sync section, followed by a frequency_sync section, followed by a run length coded command section and finally terminated with an optional CRC section. The command and the CRC sections differ in length between downstream and upstream frames.

The chosen bit encoding ensures a maximum number of adjacent zeros of 4 and a maximum number of adjacent ones of 5 on the serial line. Some of the bit patterns which cannot occur during regular data transmission are used for special purposes. A pattern of 6 or more 1 -bits is considered as the bus-idle condition. The bus is idle, when no communication is currently ongoing. A pattern of 15 0 -bits is recognized as the so-called frame synchronization. This is the sequence to begin a new frame. The pattern "10101" is the so-called frequency synchronization pattern. It is used after the frame synchronization to determine the transmitter's gross data rate.

Downstream communication is defined as data inputs at SIO 1 and outputs at SIO . This is the data flow for write commands. Upstream respectively is defined as data inputs at SIO2 and outputs at SIO1. This is the data flow for the read response

Single ended downstream command frame

Downstream command frame parameters

Prameter	Description	Min.	Typ.	Max.	Unit
tBw_Ds	Downstream bit width	384	500	714	ns
tDS_CL	Downstream command length				
	CRC enabled		$86 \times$ tbw_Ds		ns
	CRC disabled		$76 \times$ tbw_ds		ns
tFrame_s	Frame sync		$15 \times$ tbw_ds		ns
trea_s	Frequency sync		$5 \times$ tbw_ds		ns
tinst	Instruction		$5 \times$ tbw_Ds		ns
taddr	Address		$15 \times$ tbw_Ds		ns
tData_DS	Downstream Data		$30 \times$ tbw_Ds		ns
tcrc_ds	CRC downstream		$10 \times$ tbw_Ds		ns
teoc	End of command Idle		$6 \times$ tBw_Ds		ns

Upstream command frame parameters

Prameter	Description	Min.	Typ.	Max.	Unit
tBw_us	Upstream bit width	384	500	714	ns
tus_cl	Upstream command length				
	CRC enabled		$61 \times$ tew_us		ns
	CRC disabled		$56 \times$ tew_us		ns
trame_s	Frame sync		$15 \times$ tew_us		ns
trea_s	Frequency sync		$5 \times$ tew_us		ns
taddr	Address		$15 \times$ tew_us		ns
toata Us	Upstream Data		$15 \times$ tew_us		ns
tcre_us	CRC upstream		$5 \times$ tew_us		ns
teoc	End of command Idle		$6 \times$ tBw_us		ns

Bit Retransmission

To ensure a correct bit-timing, the forwarded data is regenerated with the clock of the device. The retransmission starts with its own frame-sync when it can be guaranteed that a valid frame-sync timing can be created. A new frequency synchronization is only created after the freq-sync on the reception side has been received (the first four bits). Therefore the minimum propagation delay tpd introduced by the retransmission is four bit widths $t_{B w}$.

Propagation delay Appx. 3.1

Parameter	Description	Min.	Typ.	Max.	Unit
t_{pd}	Propagation delay	2.0	4.0	5.2	$\mu \mathrm{~s}$

To guarantee a correct bit-timing the device uses its own clock as reference and will never transmit faster than its own bit-timing defines, but if the received freq-sync was slower, this timing is used for the retransmission.

The retransmission uses a FIFO to compensate for speed differences between reception and transmission.

Due to the variance in the oscillator clocks of different devices, after each transmission a pause of 43% of the nominal transmission time has to be introduced. If the transmission is created by a chip with $\pm 30 \%$ oscillator clock variation the time has to be increased to a total of 70% of the transmission duration.

Initialization

The digLED_Init_Strip command initializes a particular LED chain by issuing the command on an associated ISELED communication channel.

This command is always the first command to be transmitted after power-up or reset. The command initializes a chain of devices by assigning the address of the device and by enabling or disabling the phase shift, the CRC and temperature compensation functions. The digLED_Init_Strip command is always executed with a CRC checksum. This is true for both, the command and the response frame.

If any command is received by a device before initialization, the command is always considered as illegal and the error status bit for an undefined command is set. This may happen in the chain's first device only, as a non-initialized device does not forward received messages.

If the first device in the chain receives a digLED_Init_Strip command, it takes the received address as its own device address and afterwards transmits another digLED_Init_Strip frame to the next device in the chain. It increments the address before the transmission. As the adjacent devices proceed in the same manner, the devices in the chain get enumerated with ascending addresses. When the final device in the chain recognizes there is no receiving device at its downstream link, it transmits a response frame upstream. The response frame to a digLED_Init_Strip command carries the configuration word read from the OTP. It also transmits the own devices address just initialized.

All upstream devices wait for the responses to be received and forward them towards the microcontroller.

If a frame with an address equal to the adjacent device address (own address plus one) is received, the own response to the digLED_Init_Strip command is transmitted thereafter. If the first device has transmitted its response frame, the chain is ready to process regular commands (non-Init frames).
As soon as a device is initialized, it unconditionally forwards incoming correct frames (Frame-Sync, Freq-Sync and the RLC coding as well as the frame length are checked) to the adjacent node in the chain.

Frames received from upstream are forwarded downstream and vice versa. If an error is detected, the forwarding is stopped for this frame.

Prameter
tinIT

Description
Initialization duration

Min.

$\mathrm{n} x$ (tDs_CL + tus_CL + 2 x tpD)

Write Access

Most commands of the LED Controller are write-only commands. I.e. the devices receive a command frame and execute the appropriate actions without any further communication. A write access command may be directed to a single device (unicast), to all devices (broadcast), or to a defined group of devices (multicast). As every command frame is forwarded downstream irrespective of its destination address, all stations always receive all commands. Only its execution depends on the commands destination address. To avoid communication issues, it is recommended to wait 30% of the command length between two consecutive commands.

Multiple single ended downstream commands

Recommended latency between downstream commands

Prameter	Description	Min.
tos_Lat	Latency beween two downstream commands	$0.3 \times$ tos_CL

Read Access

A read access consists of two phases, the command and the response phase. The command phase uses downstream communication and the response phase uses upstream communication. Commands for read access do not use the command address, i.e. these commands may not be directed to a device based on the device address.

There are two commands for read access, digLED_Read and digLED_Ping. The digLED_Read commands retrieve a status information from all devices and the digLED_Ping command is used to check the device chain's integrity. Only the final node in the chain responds to a PING command.

A digLED_Read command is first received by all devices via the frame in downstream direction. The last node in the chain then immediately transmits its response frame upstream. The response frame's data field depends on the actual digLED_Read command. The response frame's address field is set according to the own device's address. All the nodes upstream forward all received response frames until a frame with the address of their adjacent node is received. Then the respective node transmits its own response frame. This procedure lasts until the chain's first node has transmitted its response frame.

A digLED_Ping command is similar to a digLED_Read command, but only the last device in the chain responds to a digLED_Ping. Thus, the digLED_Ping command is executed much faster than a regular digLED_Read command.

Single ended read command \& responses

Down- and upstream delay, delay between responses

Name
 Description
 Formula

tDs_us

Delay between down- and upstream
tDs_CL + tus_CL + $2 \times \mathrm{n} \times \mathrm{tPD}$

	Delay between responses	
tRESP	Oscillator variation of adjacent devices $< \pm 30 \%$	$0.43 \times$ tus_CL
	Oscillator variation of adjacent devices $> \pm 30 \%$	$0.7 \times$ tus_CL

Innovating Illumination

Timeouts

The digLED_Init_Strip, all the digLED_Read, and the digLED_Ping commands initiate upstream data transmission. With the digLED_Init_Strip and the read commands all nodes are expected to send a response to the host. The digLED_Ping requires only the last node in the LED chain to respond. However, in all cases each node needs to await all responses originating from the nodes downstream. Thereafter either the node's own response is transmitted or new commands are accepted. Only the last node in the LED chain may immediately transmit its response.

In case there is an error with the chain downstream, not all expected responses may arrive. Thus, each of the commands expecting a response waits for a certain time only and then returns to its previous state without having transmitted the node's response data.

The lengths of the timeouts depend on the respective command. They are calculated to account for the worst-case oscillator frequency tolerance. I.e. the waiting node has a high-speed clock and all the nodes waited for have a low speed clock. The hardware implementation uses an internally divided clock for the timeout counter:

$$
\text { f[timeout] }=\mathrm{f}[\mathrm{osc}] / 214
$$

With the nominal clock frequency of 16 MHz the counter's resolution results to 1.024 ms .

Timeouts ${ }^{\text {Appx. } 3.1}$

Command	Max. counter value	Min. timeout	Nom. timeout	Max. timeout	Unit
digLED_Init_Strip	992	780.6	1015.3	1451.2	ms
digLED_Read_*	427	335.6	436.7	624.6	ms
digLED_Ping	62	48.0	63.0	90.7	ms

PWM Units

Basic Mode of Operation

The LED controller device incorporates three independent PWM channels, one for each LED.

The resolution is 12 bit. The supported duty cycles are $0 / 4096$ to $4095 / 4096$. The nominal PWM output frequency is $16 \mathrm{MHz} / 215$ $=488.3 \mathrm{~Hz}$. The frequency is reduced to the half or the quarter of this frequency with low duty cycles. This ensures a minimum ontime of $2 \mu \mathrm{~s}$ for the LEDs. The minimum output frequency is 122 Hz . The output frequency is not derived from the actual PWM duty cycle but from the RGB value received from the host. As the DIM command also has impact to the LED intensity, it is accounted for as well. The actual relationship is given in the following table.

DIM parameter relationships between RGB parameters and PWM frequencies

DIM	RGB Parameter	PWM Frequency in Hz
0	$8 \ldots 255$	488
	$4 \ldots 7$	244
1	$0 \ldots 3$	122
	$16 \ldots 255$	488
	$8 \ldots 15$	244
	$0 \ldots 7$	122
3	$32 \ldots 255$	488
	$16 \ldots 31$	244
	$0 \ldots 15$	122

The output frequency is determined independently for each of the PWM channels.

Innovating Illumination

Update

When a new PWM duty cycle has to be applied, this is always done at the end of a PWM cycle. I.e. the PWM always completes an output cycle using the previously active duty cycle and starts the next output cycle using the updated duty cycle.

Phase Shift

To spread the LED's current consumption over time, the three PWM channels have a fixed phase shift to each other. This phase shift is retained even if the output frequency of the channels is different. If a channel is operating at a lower frequency, it may be considered to leave out one or three full PWM cycles. When leaving power save mode, the channels are restarted appropriately to again obtain the correct phase shift.
The fixed phase shift is defined in the following table. Please note the absolute phase shift times are nominal values. I.e. they are subject to vary with the internal oscillator's frequency.

Phase Shift

PWM Channel	Rel. Phase Shift
Green	0%
Red	25%
Blue	75%

Power Save Mode

When all LED channels are set to an intensity of 0 , the device enters a power save mode for the current sources driving the LEDs. I.e. the digLED_Set_RGB command must be issued with an RGB value of 0×000000 to enter the power save mode.

Recovering from this mode does not require any particular measures. I.e. the host just needs to issue a digLED_Set_RGB command with the data field different from 0×000000 and the current sources are restarted again. There is a delay of approx. $1 \mu \mathrm{~s}$ before the restart of the green PWM channel (no phase shift applies to the green channel).

This is due to an internal ramp-up required by the analog circuitry. The same procedure is applied after device power-up or a hardware reset, as the initial RGB value is 0×000000. I.e. the LEDs are all turned off after power-up or a hardware reset.

DIM Function for Accurate Low Light Colors

To extend the digLED_Set_RGB command's resolution for accurate low light colors, the seddLED provides the digLED_Dim command. The command divides the PWM duty cycles computed from the RGB setting. There are four divisors available. Details are shown in below Figure and Table.

DIM Function

DIM	Relative PWM Ratio
0	1
1	$1 / 2$
2	$1 / 4$
3	$1 / 8$

seddLED3.0 A3A-FKG-1800-1 Package Outlines

Material

Material

Lead-frame

Housing

Encapsulant

Soldering Leads
Au Plating

Recommended Solder Pad

Additioanl Cu area for better heat dissipation.

Taping and orientation

Packaging Specification

Reel Diameter (mm)
Standard Packing
Optional Packing
180
329
Quantity (pcs)
1000
5000
\square
*Ordering Number
A3A-FKG-1800-1
A3A-FKG-1800-1-5

Notes:

* For ordering purpose only. Please consult sales and marketing for details.

Packaging Specification

Quantity per bag (pcs)	Average 1pc seddLED3.0	1 completed bag (gram)
1000	0.023	230 ± 10
5000	0.023	720 ± 10

180	$210 \times 210 \times 20$
329	$345 \times 345 \times 20$

Recommended Pb-free Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E

Profile Feature	Symbol	Min.	Pb-Free Assemb Recommended	Max.	Unit
Ramp-up rate to preheat $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {smin }}$	-	-	2	3	${ }^{\circ} \mathrm{C} / \mathrm{s}$
$\begin{aligned} & \text { Time } t_{s} \\ & T_{\text {smin }} \text { to } T_{\text {smax }} \end{aligned}$	$\mathrm{t}_{\text {s }}$	60	100	120	s
Ramp-up rate to peak T_{L} to T_{P}	-	-	2	3	${ }^{\circ} \mathrm{C} / \mathrm{s}$
Liquidous temperature	T_{L}	-	217	-	${ }^{\circ} \mathrm{C}$
Time above liquidous temperature	t_{L}	60	80	150	s
Peak temperature	T_{p}	-	245	260	${ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of the specified peak temperature $\mathrm{T}_{\mathrm{p}}-5^{\circ} \mathrm{C}$	t_{p}	10	20	30	S
Ramp-down rate T_{p} to $100^{\circ} \mathrm{C}$	-	-	3	6	${ }^{\circ} \mathrm{C} / \mathrm{s}$
Time $25^{\circ} \mathrm{C}$ to T_{P}	-	-	-	480	S

Appendix

1) Brightness:

1.1 Luminous intensity is measured with an internal reproducibility of $\pm 8 \%$ and an expanded uncertainty of ± 11 \% (according to GUM with a coverage factor of $\mathrm{k}=3$).
1.2 Luminous flux is measured with an internal reproducibility of $\pm 8 \%$ and an expanded uncertainty of $\pm 11 \%$ (according to GUM with a coverage factor of $\mathrm{k}=3$).
2) Color:
2.1 Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of $k=3$).
2.2 DOMINANT wavelength is measured with an internal reproducibility of $\pm 0.5 \mathrm{~nm}$ and an expanded uncertainty of $\pm 1 \mathrm{~nm}$ (accordingly to GUM with a coverage factor of $\mathrm{k}=3$).
3)
3.1 The stated value is derived from statistical distribution.

Revision History

Page	Subjects	Date of Modification
-	Initial Release	09 Nov 2022

NOTE

All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein.

DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design.

DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies.

Dispose of product is in accordance with local, regional, national and international regulations.

About Us

DOMINANT Opto Technologies is a dynamic company that is amongst the world's leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT's state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, an IATF 16949 and ISO 14001 certified company, can be found under http://www.dominant-semi.com.

Please contact us for more information:

DOMINANT Opto Technologies Sdn. Bhd
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia.
Tel: +606 2833566 Fax: +606 2830566
E-mail: sales@dominant-semi.com

